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Control of stochastic multistable systems: Experimental demonstration

B. K. Goswami,l S. Euzzor,2 K. Al Naimee,2 A. Geltlrude,2 R. Meucci,2 and F. T. Arecchi’
'Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
%Istituto Nazionale di Ottica Applicata, 50125 Florence, Italy
(Received 23 March 2009; revised manuscript received 27 May 2009; published 22 July 2009)

Stochastic disturbances and spikes (sudden sharp fluctuations of any system parameter), commonly observed
among natural and laboratory-scale systems, can perturb the multistable dynamics significantly and become a
serious impediment when the device is designed for a certain dynamical behavior. We experimentally demon-
strate that suitable periodic modulation of any system parameter may efficiently control such stochastic mul-
tistability related problems. The control mechanism is verified individually with two standard models (namely,
an analog circuit of Lorenz equations and a cavity-loss modulated CO, laser), against three externally intro-
duced disturbing signals, (namely, white Gaussian noise, pink noise, and train of spikes). Indeed, with both the
systems, it has been observed that the modulation is capable to significantly control untoward jumps to
coexisting attractors that otherwise would have occurred due to either of the disturbances. These results
establish the robustness and wide applicability of this control mechanism in resolving stochastic multistability

related problems.
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Stochastic disturbances, commonly observed among natu-
ral and laboratory-scale systems, can influence the multi-
stable dynamics in many ways [1-3]. For instance, it may
lead to (i) unidirectional transitions from smaller basins of
attraction to relatively larger basins, (ii) intermittent transi-
tions among coexisting attractors (“multistate hopping inter-
mittency”) for relatively stronger noise, (iii) stochastic reso-
nance [4] and (iv) advancement of local bifurcations (or
crises), intermittent shuttling over the respective bifurcation
(or crisis) criticality and coherence resonance [5] (also ob-
servable in the monostable scenario).

In general, from the viewpoint of designed performance
of any applications, multistability in the presence of stochas-
tic disturbance is undesirable if the device has to remain at
any given attractor. While examples of such systems (appli-
cations) are many [6,7], we mention here about the natural
circulation fluid dynamical systems, for instance, the coolant
flow in the nuclear reactor based power generators that are
topical subjects of research [8,9]. While designing the oper-
ating regimes of the coolant circulatory systems, it is prefer-
able to avoid oscillatory instabilities. Therefore, the experi-
mental observation of multistability in such thermal
hydraulic systems [8] recommends a precautionary measure
to avoid any stochastic perturbation induced settlement to
such oscillatory convective flow patterns.

Let us refer to some well-known concepts of controlling
multistable systems. In noise and feedback control, the noise
helps to bring the system in the close proximity of the de-
sired basin when the feedback control is applied to stabilize
the system at a specified attractor [10] or to repel from an-
other [11]. A relatively faster control technique incorporates
targeting the desired attractor [12]. However, all these feed-
back based control mechanisms have certain limitations to-
ward wider and reproducible applications. They require, in
the words of Feudel [7], “an appropriate feedback-loop as
well as a permanent tracking of the trajectory” that may not
be an easy proposition in general.

In contrast, the periodic perturbation control mechanism,
in the form of modulation of any system parameter [13] or
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introduction of a driving force [14], is easily realizable,
purely deterministic, and therefore reliably reproducible. The
control mechanism has been theoretically demonstrated with
a few nonstochastic models of laboratory-scale systems, for
instance, delayed feedback CO, [15] and semiconductor [16]
lasers, and Lorenz equations [17]. The periodic perturbation
makes the undesirable attractor chaotic and simultaneously
transforms the invariant manifolds of the neighboring bound-
ary saddle, leading to homoclinic tangency and boundary
crisis of the chaotic attractor. This control technique has also
been shown to transform an exceedingly complex multistable
scenario (simultaneous coexistence of infinitely many attrac-
tors that occur in the weak dissipative limit [18]) to a
monostable one [19]. From the experimental side, the peri-
odic perturbation mechanism has been validated so far with
systems having such excellent signal-to-noise ratio. For in-
stance, CO, [13] and fiber lasers [20] and an analog circuit of
Lorenz equations [17].

Keeping in mind other laboratory-scale or natural systems
where stochastic disturbances or sudden sharp fluctuations in
system parameters are commonly observed, it might be in-
teresting to know whether the control perturbation is equally
capable to handle various types and strengths of stochastic
disturbances. In the case of Hénon map [19], the control has
been theoretically shown to work in the presence of Gaussian
white noise. Furthermore, similar theory, individually with
Lorenz equations and Toda oscillator, predict the successful
applicability even in the presence of strong noise [14]. How-
ever, to our knowledge, so far no significant experimental
verification has been made toward controlling stochastic
multistability. This motivates us to experimentally validate
the control technique with two standard models, namely, an
analog circuit of Lorenz equations (the paradigm of thermal
hydraulics) and a cavity-loss modulated CO, laser (the most
well-known experimental prototype of nonlinear systems).
Also, the control mechanism is tested against three types of
disturbing sources, namely, white Gaussian noise, pink noise,
and a train of spikes (or sharp trigger pulses). The analog
circuit dynamics is perturbed individually with white or pink
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FIG. 1. Analog circuit of stochastic Lorenz equations under pe-
riodic parameter modulation.

noise. Indeed, on both occasions, it is observed that the pe-
riodic parameter modulation is capable to control untoward
jumps to coexisting attractors that otherwise would have oc-
curred due to the presence of the disturbing sources. Further-
more, similar efficacy of the control mechanism has also
been observed when the multistable CO, laser is disturbed
individually with a train of spikes or white noise. First the
experiments with the analog circuit are explained in more
detail.

The schematic of the analog circuit of Lorenz equations is
shown in Fig. 1 and the voltage kinetics is defined by
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R,C R,C
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Y=—"7T"7X-—"Y-—XZ,
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7= xy- LZ,
RsC R,C
where R =75 kQ, R,=75 kQ, R;=2.89 k) R,
=28.125 kQ, Rs=30 kQ, and C=6.8 nF. We have used
LT1114 operational amplifier ICs for analog integrations (de-
noted by I1, 12, and I3) and inversions (denoted by “—17),
and MLT04 ICs for analog multiplications (denoted by cross
symbols inside circles). The noise generator is shown by
Vovise and the periodic control modulation by V..o
=A sin(27vr). In the absence of noise and control signals,
the circuit equations can be transformed to Lorenz equations
with o0=10, p=25.95, pB=8/3. For 2.87 kQA<R;
<2.91 k{), the circuit exhibits simultaneous coexistence of
the chaotic attractor and two stable steady states, denoted by
S, (for X>0) and S_ (for X<<0). The operating point R,
=2.89 k() is inside the multistable regime. The basin of each
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steady state is determined by the surrounding unstable peri-
odic orbit (UPO). The control of noise-free multistable Lo-
renz model has been studied theoretically and experimentally
in Ref. [17] that we review here in few lines. By suitably
choosing the control amplitude and frequency, the chaotic
attractor can be destroyed by introducing collision with any
UPOs so that the circuit jumps to a steady state. If the control
frequency is close to the UPO frequency, the threshold con-
trol amplitude, required to induce such boundary crisis,
would be minimum. This phenomenon has been referred to
as crisis resonance. In the experiments with the present cir-
cuit, we have observed similar destruction of chaotic attrac-
tor by the periodic modulation of system parameters. The
curve in Fig. 2(a) shows the crisis threshold control ampli-
tude (A,,;,) at various control frequencies. The threshold am-
plitude is minimal when the control frequency is close to 400
Hz and 1.6 kHz. With this information about the noise-free
case, we now introduce white noise to the circuit while the
control is switched off. Figures 2(b) and 2(c) illustrate some
statistical features of the white noise generator. One million
time-series data of noise (sampling period 20 us) have been
used for such analysis. Figure 2(b) shows that the noise mag-
nitude lies in the range [-6.5 V:6.5 V] that represents
strong noise as the absolute magnitudes of X, Y and Z lie in
general within 3 V. The entire range of noise magnitude has
been divided into 25 intervals and the probability distribution
over these intervals has been computed and illustrated by
filled circles. The solid line in this plot denotes the Gaussian
fit with standard deviation 2.55 V and zero mean. Figure 2(c)
demonstrates the corresponding uniform broadband Fourier
spectrum. We analyze the dynamics in the phase
space of such strong noise-driven circuit. A suitably
large region in the phase space (-1.5<X<1.5,
0<Z<3) is selected around the chaotic attractor and the
stable steady states. This phase-space region is uniformly
divided into (N,=25 X 25) cells. We record the time series of
X and Z voltages for suitably large time-interval, say N,
=10° time steps (each of 20 microseconds duration), and
compute the total number of visits in each cell. The occupa-
tion probability density D(X,Z) per unit cell around the point
(X,Z) is defined by D(X,Z)=P(X,Z)/(N,N,) where P(X,Z)
denotes the number of time steps the system remains inside
the cell around (X, Z) point. While comparing the probability
distribution of the uncontrolled noisy dynamics [Fig. 2(d)]
with that of the controlled scenario [Fig. 2(e)], we keep the
values of N, and N, unchanged. The probability distribution
[for convenience, represented by P(X,Z)]in Fig. 2(d) vividly
reveals the stochastically driven motion in the basin of the
chaotic attractor. In particular, the system stays maximum
probable period around the saddle (X=Y=Z=0). This feature
can be explained as follows: the speed of convergence to the
saddle via stable manifold or divergence away from the
saddle via unstable manifold decreases substantially in the
vicinity of the saddle resulting in the sharp increase of the
occupation probability. However, away from the saddle, the
system moves relatively fast inside the basin of the chaotic
attractor, including occasional spiraling around the UPOs,
before approaching back again to the saddle via the stable
manifold. The prominent two holes in the probability distri-
bution profile indicate that the system rarely stays inside the
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FIG. 2. (Color online) (a) Threshold control amplitude (A,;,) versus control frequency (v), shown by star symbols. (b) Probability
distribution of the white noise: experimental data are shown by filled circle symbols and the corresponding Gaussian fit by solid line. (c)
Fourier spectrum of white noise. (d) and (e) represent the probability distributions for the uncontrolled noisy and controlled noisy circuits,
respectively. (d) Without control, probability is highest around the saddle (X=Y=Z=0) inside the chaotic attractor and negligible in the
basins of steady-state attractors. (e) However, in the presence of control modulation, the circuit dynamics is essentially confined around one
steady state while the occupation probability in the chaotic attractor exhibits a sharp decrease.

basins of steady states. If the system ever enters any such
basin, noise is strong enough to eject the system very fast
and put it back inside the chaotic attractor.

Such a scenario can also be changed remarkably when the
control modulation is switched on with appropriately set pa-
rameter values. Figure 2(e) demonstrates such a case. The
control frequency is set at v=1.70 kHz where the crisis
threshold amplitude is minimum. Also, the control amplitude
is set at (A,=200 mV), higher than the crisis threshold. The
phase-space probability distribution demonstrates a com-
pletely contrasting scenario with respect to the uncontrolled
case. The probability density around the steady state S, is
now much larger than that around the chaotic attractor in
general and the saddle in particular. The underlying phenom-
enon behind such significant transformation is the control
perturbation induced boundary crisis of the chaotic attractor.
In particular, the sharp reduction of occupation period around
the saddle (X=Y=Z=0) is a consequence of a homoclinic
tangency. This is because the system is driven away by noise
whenever the trajectory is close to any tangency points and
therefore the system does not get adequate opportunity to
approach the saddle.

Next we analyze the effect of control modulation in the

presence of pink noise. Figure 3(a) shows a typical time
series that clearly suggests rare occurrence of small-
amplitude noise. Figure 3(b) describes the corresponding
(grossly) symmetric probability distribution with the mini-
mum at the center and the most probable magnitude (abso-
lute value) of noise in the interval between 0.6 and 1 V. This
is in contrast with Gaussian white noise. Besides, the Fourier
spectrum in Fig. 3(c) shows a maximum in the low fre-
quency range and an over all decrease along the high fre-
quency range. Thus the spectrum is also qualitatively differ-
ent from that of white noise. We compute the phase-space
occupation probability distribution in the same manner as
followed in the case of white noise. The circuit dynamics is
analyzed for N,=500 000 time steps. Figure 3(d) illustrates
the probability distribution of the pink-noise induced circuit
dynamics. It reveals that the circuit remains in the chaotic
attractor. In particular, the probability is maximum around
the saddle (X=Y=Z=0). Also, the occupation density is
again minimum around the steady states. These features are
similar with the white noise case. As we introduce the con-
trol modulation suitably, the situation changes drastically.
Figure 3(e) shows the probability distribution in the presence
of control modulation (A,=130 mV; v=1.7 kHz). Notice-
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FIG. 3. (Color online) (a) Time series, (b) probability distribu-
tion, and (c) Fourier spectrum of pink noise. (d) and (e) represent
the probability density of phase-space occupation for uncontrolled
noisy and controlled noisy circuits respectively. (d) Without control,
probability is highest around the saddle (X=Y=Z=0) and negligible
in the basins of the steady-state attractors. (e¢) In the presence con-
trol modulation, one steady state becomes most preferred attractor
while the occupation density has sharply reduced in the chaotic
attractor.

ably the scenario is again completely contrasting to the un-
controlled case. P(X,Z) is maximum around “S,” steady
state. In contrast, inside the chaotic attractor, in particular,
around the saddle, it has predominantly gone down. Thus, we
have demonstrated control of stochastic multistable scenario
quite successfully with two different types of stochastic dis-
turbances.

Here we explore the effect of periodic parameter modula-
tion on the stochastic multistable scenario of a single-axial
mode TEM, CO, laser. Figure 4 schematically illustrates the
experimental setup of the laser where an electro-optic modu-
lator (EOM) is inserted to create multistability. The cavity
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FIG. 4. The schematic of the CO2 laser: CO2 Gas mixture tube
(C0O2), grating (G), mirror (M), Beam-splitter (BS), photodetector
(D), laser power meter (PM), electro-optic modulator (EOM), wave
generator (WG), arbitrary function generator (AFG), and differen-
tial amplifier (E).
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FIG. 5. (a) Bifurcation diagram [laser intensity (DO) versus
modulation amplitude (Ad)] shows the period-3 branch (filled sym-
bols) coexisting with the period-1 branch (solid line). (b) The inten-
sity time series illustrates trigger-induced transitions from period-1
to period-3. (c) The period-3 time series is shown with better reso-
lution. (d) Successful inhibition of the trigger-induced switching by
a control signal. Panels (e) and (f), respectively, show the laser
intensity time series and its FFT when the laser is driven by Gauss-
ian white noise signal (80 mVpp). Two period-3 bursts are shown
by horizontal arrows in panel (e). (f) The presence of spectral lines
of frequency »/3 and its higher harmonics in the FFT also indicate
noise-induced jumps between period-1 and period-3. Panels (g) and
(h) demonstrate, respectively, the intensity time series and its FFT
in the additional presence of the control modulation (4 kHz fre-
quency and 70 mVpp). (g) The intensity time series does not exhibit
any prominent period-3 bursting. (h) The spectrum also does not
exhibit any prominent spectral lines of the period-3 attractor.

length (L) is 1.45 m and the total transmission 7 is approxi-
mately 0.10 per cavity roundtrip. The cavity decay rate of the
laser intensity can be expressed as  k(r)=ky(l
+asin® (7/V\)[By+M F(t)]; ky=cT/L, c being the speed of
light in the vacuum, a=(1-2T)/2T. V,=2650T is the half-
wave voltage and B, is the bias voltage. The time-varying
signal F(r), amplified M times, and the bias voltage, B are
added, before being applied to the EOM. For our experi-
ments, laser power is 30 mW, M =85 and By=365 V. The
laser intensity is measured in terms of the photodetector out-
put voltage (DO), visually analyzed by an oscilloscope and
corresponding data are stored in a computer for further time-
series analysis and fast Fourier transform (FFT).

The relaxation oscillation frequency, as measured by
probing the harmonic resonance, is approximately 50 kHz.
We drive the EOM by a periodic voltage of frequency » and
amplitude Ad (provided by the AFG) where the drive fre-
quency is three times the relaxation oscillation frequency
(v=150 kHz). In this period-3 subharmonic resonance re-
gion, we observe coexistence of period-3 attractor with the
period-1 attractor. Panel (a) in Fig. 5 shows the bifurcation
diagram (laser intensity versus modulation amplitude) where
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the vertical coordinate represents the stroboscopically
sampled photodetector output signal (DO); the sampling fre-
quency is equal to the modulation frequency. The solid line
denotes the period-1 branch and the filled symbols denote the
period-3 branch. We fix the operating point at the drive am-
plitude 860 mV, indicated by an arrow. Next with the help of
AFG, we add a train of trigger pulses (of repetition rate 1
kHz) over the previous periodic signal. The phase difference
and pulse heights are adjusted appropriately so that the laser
jumps from the period-1 to period-3 attractors. The trigger
pulses in these experiments symbolize sharp spurious fluc-
tuations that may occur due to many reasons and are com-
monly observed in laser electronics. The intensity time series
in panel (b) illustrates a few trigger-induced transitions from
period-1 to period-3; one is shown by a horizontal arrow.
The period-3 state is denoted by “3” and period-1 by “1.”
The period-3 time series is shown with better resolution in
panel (c). The objective of the control mechanism is to
counter the jumps to period-3 and confine the laser at the
period-1 attractor. We additionally introduce the control
modulation, provided by the wave generator (WG). By keep-
ing the control frequency fixed and increasing the control
amplitude, we indeed observe a fascinating qualitative
change in the laser dynamics. Panel (d) shows the intensity
time series of such a case with control frequency 30 kHz and
amplitude 10 mV. By comparing with the uncontrolled sce-
nario, shown in panel (b), one may notice successful inhibi-
tion of the trigger-induced switching from period-1 to
period-3 attractors. The laser remains predominantly in the
period-1 attractor in spite of recurrent train of trigger pulses.
This is because the period-3 attractor is destroyed by the
control modulation and the basin has lost the capacity to
retain the system even if any trigger pulses send the system
there.

Next, we investigate the control of white Gaussian noise-
driven multistable scenario by introducing Gaussian white
noise source in place of the trigger pulse generator. The noise
generator is not shown explicitly in the schematic. We in-
crease the strength of the noise signal sufficiently so that the
laser exhibits intermittent jumps to period-3 basin. Panels (e)
and (f), respectively, show the noise-driven laser intensity
time series and its FFT for the noise strength 80 mVpp. Two
period-3 bursts are shown by horizontal arrows in panel (e).
The noise-induced jumps to period-3 attractor are also evi-
dent in the FFT [panel (e)] where one may notice the pres-
ence of spectral line of frequency »/3 and its higher harmon-
ics. Next a slow periodic control modulation (of frequency 4
kHz) is introduced by the WG and the control amplitude is
increased. Here again, we notice successful control of
switching to the period-3 attractor for control amplitude 70
mVpp and above. Panel (g) shows the intensity time series
that, in contrast with the uncontrolled scenario in panel (e),
does not exhibit any prominent period-3 bursting. The peri-
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odic envelope modulation, in panel (g), is due to the 4 kHz
control modulation. The inhibition of visits to the period-3
basin is also reflected in the intensity FFT, shown in panel
(h). Unlike the uncontrolled scenario [panel (f)], the spec-
trum does not exhibit any spectral line of the period-3 attrac-
tor. Thus from the laser experiments, we have demonstrated
the successful control of stochastic multistability individu-
ally in the presence two types of disturbing environment-
sharp triggers and white noise. One reason of such magnifi-
cent success of the control mechanism could be the fact that
noise does not deter crisis. On the contrary, noise may ad-
vance the onset of such crisis [21].

Finally, we may also note that in the presence of the con-
trol perturbation, all attractors and their basins are affected.
Commonly the strongest attractor undergoes interior crisis at
very large control amplitude while the remaining attractors
undergo boundary crisis at much less values of the control
amplitude. It may therefore be possible to compute a sequen-
tial hierarchy of threshold control amplitudes corresponding
to crises of the coexisting attractors. By limiting the control
parameter magnitudes appropriately, it may be feasible to
leave the strongest attractor essentially unperturbed while de-
stroy the remaining ones. Therefore, this control mechanism
relies on the “survival of the fittest” concept and is very
efficient in selecting the strongest attractor. This has been
observed so far that the attractors that resemble the corre-
sponding linear or regular systems are the strongest. For in-
stance, in the case of any periodically forced nonlinear sys-
tem, the period-1 attractor is the strongest. Similarly, in the
case of autonomous systems, the steady states are the stron-
gest. These features have been recently found in the case of
Hénon map [19], Toda oscillator, and Lorenz equations [14].
Therefore, this control mechanism could be very effective to
confine the stochastic multistable dynamics around the linear
(or regular) regimes.

To conclude, we have experimentally demonstrated the
control of stochastic multistability, by periodic perturbation
mechanism, individually with an analog circuit of Lorenz
equations and a CO, laser. In the case of the analog circuit,
we have tested the control mechanism individually under
two contrasting types of externally controlled noise sources,
namely, white Gaussian noise and pink noise. In the case of
the CO, laser, we have done similar experiments individually
in the presence of an array of trigger pulses and Gaussian
white noise. Remarkably, on all occasions, the control
mechanism works successfully. These results strongly en-
dorse the robustness and wide applicability of this control
mechanism in resolving stochastic multistability related
problems.
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